Now Playing Tracks

CONSTRUCTION TO BEGIN ON NASA SPACECRAFT SET TO VISIT ASTEROID IN 2018

NASA’s team that will conduct the first U.S. mission to collect samples from an asteroid has been given the go-ahead to begin building the spacecraft, flight instruments and ground system, and launch support facilities.

This determination was made Wednesday after a successful Mission Critical Design Review (CDR) for NASA’s Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx). The CDR was held at Lockheed Martin Space Systems Company in Littleton, Colo., April 1-9. An independent review board, comprised of experts from NASA and several external organizations, met to review the system design.

“This is the final step for a NASA mission to go from paper to product,” said Gordon Johnston, OSIRIS-REx program executive at NASA Headquarters, Washington, DC. “This confirms that the final design is ready to start the build-up towards launch.”

OSIRIS-REx is scheduled to launch in the fall of 2016, rendezvous with the asteroid Bennu in 2018 and return a sample of it to Earth in 2023. The spacecraft carries five instruments that will remotely evaluate the surface of Bennu. After more than a year of asteroid reconnaissance, the spacecraft will collect samples of at least 2 ounces (60 grams) and return them to Earth for scientists to study.

“Successfully passing mission CDR is a major accomplishment, but the hard part is still in front of us — building, integrating and testing the flight system in support of a tight planetary launch window,” said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Key mission objectives focus on finding answers to basic questions about the composition of the very early solar system and the source of organic materials and water that made life possible on Earth. The mission will also aid NASA’s asteroid initiative and support the agency’s efforts to understand the population of potentially hazardous near-Earth objects and characterize those suitable for future asteroid exploration missions. The initiative brings together the best of NASA’s science, technology and human exploration efforts to achieve President Obama’s goal of sending humans to an asteroid by 2025.

“The OSIRIS-REx team has consistently demonstrated its ability to present a comprehensive mission design that meets all requirements within the resources provided by NASA,” said Dante Lauretta, principal investigator from the University of Arizona, Tucson. “Mission CDR was no exception. This is a great team. I know we will build a flight and ground system that is up to the challenges of this ambitious mission.”

In January, NASA invited people around the world to submit their names to be etched on a microchip aboard the spacecraft. After submitting their name, participants are able to download and print a certificate documenting their participation in the OSIRIS-REx mission. The campaign is open until September 30, 2014.

IMAGE„„This is an artist’s concept of NASA’s OSIRIS-REx spacecraft preparing to take a sample from asteroid Bennu.
Image Credit: NASA/Goddard

UA SCIENTISTS TO BEGIN CONSTRUCTION ON
NASA SPACECRAFT THAT WILL VISIT ASTEROID IN 2018

NASA has given the OSIRIS-REx mission, led by the University of Arizona, the go-ahead to begin building the spacecraft, flight instruments, ground system and launch support facilities. OSIRIS-REx is the first U.S. mission slated to send a spacecraft to a near-Earth asteroid and collect samples.

The mission will focus on finding answers to basic questions about the composition of the very early solar system and the source of organic materials and water that made life possible on Earth. It will also aid NASA’s asteroid initiative and support the agency’s efforts to understand the population of potentially hazardous near-Earth objects and characterize those suitable for future asteroid exploration missions.

The UA got the thumbs up on April 9 after a successful Mission Critical Design Review (CDR) for NASA’s Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx). The review was held at the Lockheed Martin Space Systems Company in Littleton, Colo., April 1-9. An independent review board, comprised of experts from NASA and several external organizations, met to review the system design.

“Successfully passing mission CDR is a major accomplishment, but the hard part is still in front of us — building, integrating and testing the flight system to meet our tight launch window,” said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Md.

“It marks a major shift in our mission,” said Ed Beshore, a scientist at the UA Lunar and Planetary Laboratory and the Department of Astronomy and Steward Observatory, who is the mission’s deputy principal investigator. “For all of us involved with OSIRIS-REx, it is a transition from designing the mission to implementing it. It means we are now cutting metal, building a spacecraft and writing software.”

OSIRIS-REx is scheduled to launch in the fall of 2016, rendezvous with the asteroid Bennu in 2018 and spend a year studying the asteroid before collecting a sample of at least 2 ounces (60 grams) of surface material and returning it to Earth for scientists to study in 2023.

NASA’s Goddard Space Flight Center will provide overall mission management, systems engineering and safety and mission oversight for OSIRIS-REx. The UA will lead the effort, provide the camera system and science processing and operations center. Lockheed Martin Space Systems in Denver will build the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by the Marshall Spaceflight Center.

“The OSIRIS-REx team has consistently demonstrated its ability to present a comprehensive mission design that meets all requirements within the resources provided by NASA,” said principal investigator Dante Lauretta, a professor at the UA’s Lunar and Planetary Laboratory. “Mission CDR was no exception. This is a great team. I know we will build a flight and ground system that is up to the challenges of this ambitious mission.”

At the UA’s Michael J. Drake building, staffing levels have ramped up to full capacity with the construction of the spacecraft’s camera system and building the Science Processing Operations Center (SPOC). The Drake building is also where the office of the principal investigator (PI) is headquartered.

“The PI office is fully engaged in planning mission operations and ensuring the scientific integrity of the mission as well as overseeing the cost and schedule performance of the project,” mission PI Lauretta said. “This office also will lead the analysis of the sample after the spacecraft returns it to the Earth in 2023.”

“Missions like OSIRIS-REx consist of two major elements: the flight system — spacecraft and instruments — and the ground system,” Beshore explained. “The CDR is as much an approval of our ground system as of the spacecraft.”

Ground System Vital to Mission’s Success

“Once the spacecraft flies, it is under the control of the ground system,” Beshore explained.

Ground system operations include planning scientific observations, designing and implementing spacecraft navigation, verifying that the spacecraft is safe at all times during its journey, programming the commands that control the spacecraft and transmitting them over the Deep Space Network, and retrieving data from the spacecraft, processing and analyzing it.

“Many ground system activities will take place right here in Tucson,” Beshore said. “We will decide where we want to go, what data we want to acquire, and how to process the data once it starts coming down from the spacecraft.”

Along with activity on the ground, the mission already is delivering considerable economic benefits to Arizona’s economy. The camera system engineering and fabrication teams are fully operational, and SPOC is close to planned staffing levels. KinetX, a company based in Tempe, Ariz., is tasked with navigating the spacecraft, while the thermal emission spectrometer, OTES, is being built by Arizona State University, also in Tempe.

The public can follow mission progress on the OSIRIS-REx website and the PI blog, as well as on Facebook and Twitter. As part of its public engagement effort, people around the world are invited to submit their names to be etched on a microchip and placed aboard the spacecraft. After signing up with the “Messages to Bennu” campaign, participants are able to download and print a certificate documenting their participation in the OSIRIS-REx mission.

OSIRIS-REx is the second NASA mission led by the UA. In May of 2008, the UA’s Phoenix Mars lander touched down near the north pole of Mars, in the first Mars mission ever led by a university. Phoenix confirmed and examined patches of the widespread deposits of underground water ice and found evidence suggesting occasional presence of thawed water. The UA also operates the HiRISE camera onboard NASA’s Mars Reconnaissance Orbiter, which has photographed the surface of the red planet in stunning detail. Other NASA missions involving UA scientists include the Cassini spacecraft studying Saturn and its moon Titan, the JUNO mission to Jupiter and the MESSENGER spacecraft orbiting Mercury.

NASA Engineers Prepare Game Changing Cryotank for Testing

NASA and Boeing engineers are inspecting and preparing one of the largest composite rocket propellant tanks ever manufactured for testing. The composite cryotank is part of NASA’s Game Changing Development Program and Space Technology Mission Directorate, which is innovating, developing, testing and flying hardware for use in NASA’s future missions. NASA focused on this technology because composite tanks promise a 30 percent weight reduction and a 25 percent cost savings over the best metal tanks used today. The outer shell of the 18-foot-diameter (5.5-meter) cryotank is the same size as propellant tanks used on today’s full-size rockets. The tank was manufactured at the Boeing Developmental Center in Tukwila, Wash., and like artists, the team demonstrated their passion and commitment by signing their work. The silver signatures of the NASA and Boeing team members are visible on the black dome end of the tank. NASA’s Super Guppy delivered the tank in March 2014 to NASA’s Marshall Space Flight Center in Huntsville, Ala., and the Kmag, a 96-wheeled cargo truck, transported the tank to a Marshall Center test area. The 28,000-gallons (105.992- liter) tank will be insulated and placed in a test stand where it will be loaded with liquid hydrogen cooled to extremely cold, or cryogenic temperatures. The orange ends of the tank are made of metal and will attach to the test stand so that structural loads can be applied similar to those the tank would experience during a rocket launch. This advanced composite cryotank could benefit many of NASA’s deep space exploration spacecraft including NASA’s Space Launch System, the largest most powerful rocket ever built. Image Credit: NASA/MSFC/Fred Deaton

Faraway Moon or Faint Star? Possible Exomoon Found

Titan, Europa, Io and Phobos are just a few members of our solar system’s pantheon of moons. Are there are other moons out there, orbiting planets beyond our sun?

NASA-funded researchers have spotted the first signs of an “exomoon,” and though they say it’s impossible to confirm its presence, the finding is a tantalizing first step toward locating others. The discovery was made by watching a chance encounter of objects in our galaxy, which can be witnessed only once.

"We won’t have a chance to observe the exomoon candidate again," said David Bennett of the University of Notre Dame, Ind., lead author of a new paper on the findings appearing in the Astrophysical Journal. "But we can expect more unexpected finds like this."

The international study is led by the joint Japan-New Zealand-American Microlensing Observations in Astrophysics (MOA) and the Probing Lensing Anomalies NETwork (PLANET) programs, using telescopes in New Zealand and Tasmania. Their technique, called gravitational microlensing, takes advantage of chance alignments between stars. When a foreground star passes between us and a more distant star, the closer star can act like a magnifying glass to focus and brighten the light of the more distant one. These brightening events usually last about a month.

If the foreground star — or what astronomers refer to as the lens — has a planet circling around it, the planet will act as a second lens to brighten or dim the light even more. By carefully scrutinizing these brightening events, astronomers can figure out the mass of the foreground star relative to its planet.

In some cases, however, the foreground object could be a free-floating planet, not a star. Researchers might then be able to measure the mass of the planet relative to its orbiting companion: a moon. While astronomers are actively looking for exomoons — for example, using data from NASA’s Kepler mission - so far, they have not found any.

In the new study, the nature of the foreground, lensing object is not clear. The ratio of the larger body to its smaller companion is 2,000 to 1. That means the pair could be either a small, faint star circled by a planet about 18 times the mass of Earth — or a planet more massive than Jupiter coupled with a moon weighing less than Earth.

The problem is that astronomers have no way of telling which of these two scenarios is correct.

"One possibility is for the lensing system to be a planet and its moon, which if true, would be a spectacular discovery of a totally new type of system," said Wes Traub, the chief scientist for NASA’s Exoplanet Exploration Program office at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., who was not involved in the study. "The researchers’ models point to the moon solution, but if you simply look at what scenario is more likely in nature, the star solution wins."

The answer to the mystery lies in learning the distance to the circling duo. A lower-mass pair closer to Earth will produce the same kind of brightening event as a more massive pair located farther away. But once a brightening event is over, it’s very difficult to take additional measurements of the lensing system and determine the distance. The true identity of the exomoon candidate and its companion, a system dubbed MOA-2011-BLG-262, will remain unknown.

In the future, however, it may be possible to obtain these distance measurements during lensing events. For example, NASA’s Spitzer and Kepler space telescopes, both of which revolve around the sun in Earth-trailing orbits, are far enough away from Earth to be great tools for the parallax-distance technique.

The basic principle of parallax can be explained by holding your finger out, closing one eye after the other, and watching your finger jump back and forth. A distant star, when viewed from two telescopes spaced really far apart, will also appear to move. When combined with a lensing event, the parallax effect alters how a telescope will view the resulting magnification of starlight. Though the technique works best using one telescope on Earth and one in space, such as Spitzer or Kepler, two ground-based telescopes on different sides of our planet can also be used.

Meanwhile, surveys like MOA and the Polish Optical Gravitational Experiment Lensing Experiment, or OGLE, are turning up more and more planets. These microlensing surveys have discovered dozens of exoplanets so far, in orbit around stars and free-floating. A previous NASA-funded study, also led by the MOA team, was the first to find strong evidence for planets the size of Jupiter roaming alone in space, presumably after they were kicked out of forming planetary systems. (See http://www.jpl.nasa.gov/news/news.php?release=2011-147).

The new exomoon candidate, if real, would orbit one such free-floating planet. The planet may have been ejected from the dusty confines of a young planetary system, while keeping its companion moon in tow.

The ground-based telescopes used in the study are the Mount John University Observatory in New Zealand and the Mount Canopus Observatory in Tasmania.

Additional observations were obtained with the W.M. Keck Observatory in Mauna Kea, Hawaii; European Southern Observatory’s VISTA telescope in Chile; the Optical Gravitational Lens Experiment (OGLE) using the Las Campanas Observatory in Chile; the Microlensing Follow-Up Network (MicroFUN) using the Cerro Tololo Interamerican Observatory in Chile; and the Robonet Collaboration using the Faulkes Telescope South in Siding Spring, Australia.

IMAGE….Researchers have detected the first “exomoon” candidate — a moon orbiting a planet that lies outside our solar system. Image credit: NASA/JPL-Caltech

Beauty from chaos


Beautiful streamlined islands and narrow gorges were carved by fast-flowing water pounding through a small, plateau region near the southeastern margin of the vast Vallis Marineris canyon system.

Images captured on 7 December 2013 by ESA’s Mars Express show the central portion of Osuga Valles, which has a total length of 164 km. It is some 170 km south of Eos Chaos, which lies in the far eastern section of Valles Marineris.

Osuga Valles is an outflow channel that emanates from a region of chaotic terrain at the edge of Eos Chaos to the west (top in the main images). Such landscape is dominated by randomly oriented and heavily eroded blocks of terrain. Another example is seen at the bottom of this scene, filling the 2.5 km-deep depression into which Osuga Valles empties.

Catastrophic flooding is thought to have created the heavily eroded Osuga Valles and the features within it. Streamlines around the islands in the valley indicate that the direction of flow was towards the northeast (bottom right in the main colour, topographic and 3D images shown here) and sets of parallel, narrow grooves on the floor of the channel suggest that the water was fast flowing.

Differences in elevation within the feature, along with the presence and cross-cutting relationships of channels carved onto the islands, suggest that Osuga Valles experienced several episodes of flooding. The perspective view, which is oriented with the direction of the water flow towards the top of the image, shows the details of the grooved valley floor and the channels carved into the islands more clearly.

Close to the northern-most (far right) part of the channel in the main images, two large irregular-shaped blocks appear to have broken away from the surrounding terrain, but do not seem to have experienced as much erosion as the rounded islands.

The floodwater eventually emptied into the deep depression of chaotic terrain at the bottom of the main images, but it is not yet known whether the water drained away into the subsurface or formed a temporary lake.

TOP IMAGE….The central portion of Osuga Valles, which has a total length of 164 km. In some places, it is 20 km wide and plunges to a depth of 900 m. It is located approximately 170 km south of Eos Chaos, which is located at the periphery in the far eastern portion of the vast Valles Marineris canyon system.

Catastrophic flooding is thought to have created the heavily eroded Osuga Valles, which displays streamlined islands and a grooved floor carved by fast-flowing water. The water flowed in a northeasterly direction (towards the bottom right in this image) and eventually drained into another region of chaotic terrain, just seen at the bottom of the image.

Several large impact craters are also seen in this scene, including the ghostly outline of an ancient, partially buried crater in the bottom centre of the image.

The image was created using data acquired with the High Resolution Stereo Camera on Mars Express on 7 December 2013 during orbit 12 624. The image resolution is about 17 m per pixel and the image centre is at about 15ºS / 322ºE. Copyright ESA/DLR/FU Berlin

UPPER IMAGE…Osuga Valles lies about 170 km south of Eos Chaos, which is in the far eastern portion of the vast Valles Marineris canyon system. This region was imaged by Mars Express on 7 December 2013 during orbit 12 624. The smaller rectangle above outlines the region highlighted in the associated Mars Express images. Copyright NASA MGS MOLA Science Team

CENTRE IMAGE…Colour-coded topography map of the central portion of Osuga Valles. White and red show the highest terrains, while blue and purple show the deepest. The image is based on a digital terrain model of the region, from which the topography of the landscape has been derived.

The image was created using data acquired with the High Resolution Stereo Camera on Mars Express on 7 December 2013 during orbit 12 624. The image resolution is about 17 m per pixel and the image centre is at about 15ºS / 322ºE. Copyright ESA/DLR/FU Berlin

LOWER IMAGE….Close-up perspective view of the central portion of Osuga Valles, a valley carved by intense floods. The water flowed in the direction towards the top of this perspective image. The grooved nature of the valley floor suggests the water was fast flowing, carving out the features as it flooded the region. The elevated ‘island’ blocks are also carved with small channels, recording the history of previous flood episodes.

The image was created using data acquired with the High Resolution Stereo Camera on Mars Express on 7 December 2013 during orbit 12 624. The image resolution is about 17 m per pixel. Copyright ESA/DLR/FU Berlin

BOTTOM IMAGE….Data from the nadir channel and one stereo channel of the High Resolution Stereo Camera on Mars Express have been combined to produce this anaglyph 3D image, which can be viewed using stereoscopic glasses with red–green or red–blue filters.

The image was created using data acquired on 7 December 2013 during orbit 12 624. The image resolution is about 17 m per pixel and the image centre is at about 15ºS / 322ºE. Copyright ESA/DLR/FU Berlin

NASA’s TRMM satellite sees Tropical Cyclone Ita intensifying

Tropical Cyclone Ita has been intensifying as it tracks from Papua New Guinea toward Queensland, Australia, and NASA’s TRMM satellite noticed the development of an eye feature.

NASA and the Japan Aerospace Exploration Agency’s Tropical Rainfall Measuring Mission (TRMM) satellite flew above intensifying Tropical Cyclone Ita in the Coral Sea near the southeastern tip of Papua New Guinea on April 9, 2014 at 0536 UTC/1:36 a.m. EDT. Tropical cyclone had developed a large but well defined eye and had sustained winds estimated at 65 knots/75 mph. Rainfall derived from TRMM’s Microwave Imager (TMI) and Precipitation Radar (PR) data was used to create a rainfall analysis.

TRMM PR data unveiled rain falling at a rate of over 99 mm/3.9 inches per hour within Ita’s feeder bands over the coast of southeastern Papua New Guinea. TRMM PR found that tall thunderstorms in Ita’s eye wall were reaching heights of over 16 km/9.9 miles and were returning radar reflectivity values of over 57dBZ to the satellite.

On April 9 at 0900 UTC/5 a.m. EDT, Tropical Cyclone Ita’s maximum sustained winds had increased to 80 knots/92 mph/148.2 kph. Ita is a Category one hurricane on the Saffir-Simpson Scale. According to the scale, a Category 1 hurricane can cause the following: well-constructed frame homes could have damage to roof, shingles, vinyl siding and gutters. Large branches of trees will snap and shallowly rooted trees may be toppled. Extensive damage to power lines and poles likely will result in power outages that could last a few to several days.


Ita was still over 400 miles from Cairns, Australia at 0900 UTC/5 a.m. EDT. It was centered near 11.5 south and 150.2 east and moving to the west at 9 knots/10.3 mph/16.6 kph. The Joint Typhoon Warning Center (JTWC) noted that Ita is generating 25-foot/7.6 -meter high waves in the Coral Sea.

On April 9, animated multispectral satellite imagery showed Ita has tightly curved bands of thunderstorms wrapping into a consolidating low level circulation center. TRMM microwave imagery revealed a well-formed eye around that consolidating center.

The Joint Typhoon Warning Center (JTWC) is forecasting Ita to strengthen over the next two days with maximum sustained winds peaking near 105 knots before weakening from interaction with the land. Ita is expected to move southwest through the Coral Sea and reach the eastern Cape York Peninsula, Queensland by Friday, April 11. The Australian Bureau of Meteorology (ABM) noted that Ita is expected to cross the far north Queensland coast between Lockhart River and Cape Flattery late Friday.

ABM has posted a Cyclone Watch for coastal areas from Cape Grenville to Cairns, extending up to 124 miles/200 kilometers inland to areas including Kalinga, Laura, and Palmerville. For updates, visit the ABM website: http://www.bom.gov.au/cyclone/index.shtml.

From April 11 through the 14, JTWC expects an approaching shortwave trough (elongated area of low pressure) to begin pushing Ita away from the coast. Current JWTC forecasts take Ita’s center near Cairns and slowly turn Ita in a southeasterly direction causing the storm parallel the Queensland coast to Brisbane.


IMAGE…On April 9, the TRMM satellite saw rain falling at a rate of over 99 mm/3.9 inches per hour within Ita’s feeder bands over the coast of southeastern Papua New Guinea.

Credit: NASA/SSAI, Hal Pierce

Gusev Crater once held a lake after all, says ASU Mars scientist

If desert mirages occur on Mars, “Lake Gusev” belongs among them. This come-and-go body of ancient water has come and gone more than once, at least in the eyes of Mars scientists.

Now, however, it’s finally shifting into sharper focus, thanks to a new analysis of old data by a team led by Steve Ruff, associate research professor at Arizona State University’s Mars Space Flight Facility in the School of Earth and Space Exploration. The team’s report was just published in the April 2014 issue of the journal Geology.

The story begins in early 2004, when NASA landed Spirit, one of its two Mars Exploration Rovers, inside 100-mile-wide Gusev Crater. Why Gusev? Because from orbit, Gusev looked, with its southern rim breached by a meandering river channel, as if it once held a lake – and water-deposited rocks were the rover mission’s focus. Yet when Spirit began to explore, scientists found Gusev’s floor was paved not with lakebed sediments, but volcanic rocks.

Less than two miles away however stood the Columbia Hills, 300 feet high. When Spirit drove up into them, it indeed discovered ancient rocks that had been altered by water. But to scientists’ chagrin, no lake sediments were among them. Instead, scientists discovered evidence of hydrothermal activity, essentially hot springs like those in Yellowstone National Park.

But there’s hope yet for Lake Gusev, thanks to a Columbia Hills rock outcrop dubbed Comanche. This outcrop is unusually rich in magnesium-iron carbonate minerals, a discovery made in 2010 that Ruff played a major role in making. While Comanche’s carbonate minerals were originally attributed to hydrothermal activity, the team’s new analysis points to a different origin.

Cool waters

Says Ruff, “We looked more closely at the composition and geologic setting of Comanche and nearby outcrops. There’s good evidence that low temperature surface waters introduced the carbonates into Comanche rather than hot water rising from deep down.”

Comanche started out as a volcanic ash deposit known as tephra that originally covered the Columbia Hills and adjacent plains. This material, Ruff explains, came from explosive eruptions somewhere within or around Gusev.

Then floodwaters entered the crater through the huge valley that breaches Gusev’s southern rim. These floods appear to have ponded long enough to alter the tephra, producing briny solutions. When the brines evaporated, they left behind residues of carbonate minerals. As the lake filled and dried, perhaps many times in succession, it loaded Comanche and its neighbor rocks with carbonates.

"The lake didn’t have to be big," Ruff explains. "The Columbia Hills stand 300 feet high, but they’re in the lowest part of Gusev. So a deep, crater-spanning lake wasn’t needed."

Today, the Columbia Hills rise as an island of older terrain surrounded by younger lava flows, Ruff says. “Comanche and a neighbor outcrop called Algonquin are remnants of the older and much more widespread tephra deposit. The wind has eroded most of that deposit, also carrying away much of the evidence for an ancient lake.”

Return to Gusev?

Mars rover Spirit fell silent on a winter night in March 2010, and it has never been heard from since. Spirit left most of the Columbia Hills and other Gusev targets unexplored. Ruff says that as NASA evaluates landing sites for its new sample-collecting rover in 2020, Gusev Crater deserves serious consideration.

"Going back to Gusev would give us an opportunity for a second field season there, which any terrestrial geologist would understand," argues Ruff. "After the first field season with Spirit, we now have a bunch more questions and new hypotheses that can be addressed by going back."

Because the Mars 2020 rover mission will collect and cache samples for potential return to Earth, Ruff says, that makes going to an already visited site more important.

"Scientifically and operationally it makes sense to go to a place which we know has geologically diverse – and astrobiologically interesting – materials to sample," Ruff argues.

"And we know exactly where to find them."


IMAGE…The Comanche outcrop, seen in a mosaic of Panoramic Camera images from the Mars rover Spirit, holds key mineralogical evidence for an ancient lake in Gusev Crater. Credit: NASA/JPL-Caltech/Cornell University/Arizona State University

Chance meeting creates celestial diamond ring

Most stars with masses similar to that of our Sun will end their lives as white dwarfs — small, very dense, and hot bodies that slowly cool down over billions of years. On the way to this final phase of their lives the stars throw their atmospheres out into the space and create planetary nebulae, colourful glowing clouds of gas surrounding the small, bright stellar relics.

This image, captured by ESO’s Very Large Telescope (VLT), shows the remarkably round planetary nebula Abell 33, located some 1500 light-years from Earth. Being perfectly round is uncommon for these objects — usually something disturbs the symmetry and causes the planetary nebula to display irregular shapes [1].

The strikingly bright star located along the rim of the nebula creates a beautiful illusion in this VLT image. This is just a chance alignment — the star, named HD 83535, lies in the foreground of the nebula about halfway between Earth and Abell 33, in just the right place to make this view even more beautiful. Together, HD 83535 and Abell 33 create a sparkling diamond ring.

The remnant of Abell 33’s progenitor star, on its way to becoming a white dwarf, can be seen just slightly off-centre inside the nebula, visible as a tiny white pearl. It is still bright — more luminous than our own Sun — and emits enough ultraviolet radiation to make the bubble of expelled atmosphere glow [2].

Abell 33 is just one of the 86 objects included in astronomer George Abell’s 1966 Abell Catalogue of Planetary Nebulae. Abell also scoured the skies for galaxy clusters, compiling the Abell Catalogue of over 4000 of these clusters in both the northern and southern hemispheres of the sky.

This image uses data from the FOcal Reducer and low dispersion Spectrograph (FORS) instrument attached to the VLT, which were acquired as part of the ESO Cosmic Gems programme [3].


###

Notes

[1] For example, the way the star spins, or if the central star is one component of a double or multiple star system.

[2] In this very sharp image the central star appears to be double. Whether this is a real association or just a chance alignment is not known.

[3] The ESO Cosmic Gems programme is an outreach initiative to produce images of interesting, intriguing or visually attractive objects using ESO telescopes, for the purposes of education and public outreach. The programme makes use of telescope time that cannot be used for science observations. All data collected may also be suitable for scientific purposes, and are made available to astronomers through ESO’s science archive.

More information

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.


IMAGE…Astronomers using ESO’s Very Large Telescope in Chile have captured this eye-catching image of planetary nebula Abell 33. Created when an aging star blew off its outer layers, this beautiful blue bubble is, by chance, aligned with a foreground star, and bears an uncanny resemblance to a diamond engagement ring. This cosmic gem is unusually symmetric, appearing to be almost perfectly circular on the sky.
Credit: ESO

NASA Ames Launches Nanosatellites, Science Experiments on SpaceX Rocket

NASA’s Ames Research Center in Moffett Field, Calif., will launch a variety of experiments into space aboard NASA’s next commercial cargo resupply flight of the Space Exploration Technologies (SpaceX) Dragon spacecraft to the International Space Station. These experiments include a next-generation smartphone satellite, 100 stamp-sized nanosatellites and life science experiments to better our understanding of how spaceflight affects the human body, the growth of cells and plants. Future astronauts on long-term space missions in low-Earth orbit, to asteroids, other planets and beyond will benefit from these technologies and need to understand how to prevent illnesses during space travel.

The company’s third commercial resupply mission to the space station is scheduled to lift off on a Falcon 9 rocket from Cape Canaveral Air Force Station in Florida at 1:58 p.m. PDT Monday, April 14. If the launch is postponed, the next launch opportunity is Friday, April 18 at approximately 12:25 p.m. The mission will deliver several tons of supplies, including new science and technology research experiments.

The three Ames-supported satellites, which were selected for launch by NASA’s CubeSat Launch Initiative, are scheduled to deploy from the Falcon 9 rocket or Dragon spacecraft into low-Earth orbits between 200 and 250 miles (325 and 400 kilometers) above Earth.

PhoneSat 2.5 is a one-unit (1U) cubesat spacecraft built at Ames. It measures 10 centimeters square (approximately four inches on each side) and uses commercially available smartphones. This latest PhoneSat is fifth in a series and has three objectives: determine if a low-cost commercially available attitude determination and control system can work in space; verify if a smartphone can support space-based communications systems; and provide further confidence in the PhoneSat concept and components by investigating its ability to survive long-term in the radiation environment of space. PhoneSat 2.5 is equipped with a higher-gain S-Band antenna, which serves as a pathfinder for future NASA missions, including the Edison Demonstration of Satellite Network (EDSN) mission scheduled to launch later this year. EDSN plans to launch eight identical 1.5U cubesats (10-by-10-by-15 centimeters and 2.5 kilograms) based on the PhoneSat architecture in order to demonstrate the utility of multiple small spacecraft cooperatively working together. PhoneSat 2.5’s smartphone camera will attempt to transmit photographs to the ground station at Santa Clara University in California to gather information for future low-cost star trackers. The PhoneSat series of technology demonstration missions is funded by the Small Spacecraft Technology Program, in NASA’s Space Technology Mission Directorate at NASA Headquarters and the Engineering Directorate at Ames.

SporeSat is an autonomous, free-flying spacecraft that will investigate how germinating plant cells sense and respond to gravity. Researchers are studying spores in space to gain a more detailed understanding of molecular and biophysical mechanisms for gravity sensing. Specifically, it will investigate how germinating single-celled spores of the aquatic fern Ceratopteris richardii sense and respond to gravity. The 3U spacecraft built at Ames, weighs approximately 12 pounds and measures 10-by-10-by-30 centimeters (14 inches long, four inches wide, four inches tall). The science payload includes three lab-on-a-chip devices, called BioCDs, developed by researchers at Purdue University in Lafayette, Ind., for variable gravity electrophysiology studies of single cells. Each disc-shaped BioCD holds up to 32 spores. During the experiment, two of the BioCDs will spin to simulate gravity and the third will remain stationary. SporeSat was developed through a partnership between Ames, which managed the development of the mission, and the Department of Agricultural and Biological Engineering at Purdue, where Jenna Rickus and Amani Salim are the principal investigators. SporeSat is funded by the Space Biology Project at Ames and the Space Life and Physical Sciences Research and Applications Division in the Human Exploration and Operations Mission Directorate at NASA Headquarters.

KickSat is a 3U cubesat technology demonstration mission designed to deploy and operate in space a prototype 3.5-by-3.5 centimeter (1.4-by-1.4 inch) Sprite “ChipSats” developed at Cornell University, Ithaca, N.Y., with support from the Ames Office of the Chief Technologist. A 1U avionics bus provides power, communications, command and data handling, and attitude control functions, while a 2U deployer houses 100 Sprites in individual spring-loaded slots. Each Sprite is a tiny spacecraft with power, sensor and communication systems on a printed circuit board. It is intended as a general-purpose sensor platform for micro-electro-mechanical and other chip-scale sensors with the ability to downlink data to ground stations from low Earth orbit. Chipsats like the Sprite represent a disruptive new space technology that has the potential to both open space access to hobbyists and students and enable a new class of science missions. The hardware for the KickSat mission was funded by the crowdsource-funding website Kickstarter.

In addition to deploying three Ames-supported nanosatellites, Dragon also will deliver several life science experiments developed in collaboration with Ames, including:

T-Cell Activation in Aging is an investigation of the genetic and molecular mechanisms that underlie diminished T-cell activation that occurs in the aging population and astronauts. T-cell activation is a critical event during which T-cells, which are specialized immune system cells, recognize infections within the body and initiate a defensive response. The National Institute on Aging, part of the National Institutes of Health, is the sponsoring agency for the mission.

“This experiment’s unique approach to studying molecular mechanisms that contribute to decline of T-cell function will add to our understanding of the effects of zero gravity on the immune function, as well as provide insights about immune suppression, a major issue affecting older people,” said Felipe Sierra Ph.D., director of the National Institute on Aging Division of Aging Biology. “Hopefully, this will help lead to new interventions to prevent infection not only for those on space travel but also for those with compromised immune systems, including the elderly.”

Ames is the integration partner and provides science team support to the principal investigator. The European Space Agency developed the payload and provides experiment hardware, payload integration and operations support for the mission. Millie Hughes-Fulford, former NASA Astronaut and researcher at Northern California Institute for Research and Education at the San Francisco Veterans Affairs Medical Center, is the principal investigator.

Heart Effect Analysis Research Team conducting FLy Investigations and Experiments in Spaceflight (HEART FLIES) will use the fruit fly, Drosophila melanogaster, to study the effects of spaceflight on the structure and function of the heart. The investigators will evaluate heart rhythm, contractility, pumping function, and heart muscle structure in both space-flown and ground-based control flies, and also will characterize the effects of spaceflight on gene expression patterns in heart tissue. This experiment is supported by Ames, Stanford University, the Sanford-Burnham Medical Research Institute, Nanoracks LLC., and Center for the Advancement of Science in Space (CASIS). HEART FLIES was competitively selected for payload transportation to the space station by the Space Florida International Space Station Research Competition. Peter H.U. Lee is the principal investigator for this experiment. Lee was at Stanford University at the time of the grant award, and now works in the Department of Surgery at Ohio State University Wexner Medical Center. Sharmila Bhattacharya of Ames, and Rolf Bodmer and Karen Ocorr of the Sanford-Burnham Medical Research Institute in La Jolla, Calif., are co-investigators.

Micro-7 is the first spaceflight study of gene and microRNA expression in non-dividing cells. The study also will investigate how spaceflight affects the response of non-dividing cells to DNA damage. The data from Micro-7 will provide insight into how gene expression regulates cellular adaptation to spaceflight and the specific role of microRNA in this process. Missions conducted in deep space—such as a mission to Mars—will expose crew members to higher levels of DNA-damaging radiation than on Earth or in low Earth orbit. Knowledge of how cells adapt to spaceflight and whether microgravity affects cellular response to DNA damage is important for assessing future health risks for astronauts and predicting mutation rates for microorganisms. This experiment is supported by NASA’s Space Biology Project at Ames and BioServe Space Technologies at the University of Colorado, Boulder. Honglu Wu of NASA’s Johnson Space Center in Houston is the principal investigator.

Dragon also will deliver legs to the humanoid robot on the space station, Robonaut 2 (R2). The legs will provide R2 the mobility it needs to help with regular and repetitive tasks inside and outside the space station. The goal is to free up the crew for more critical work, including scientific research. R2 was developed by Johnson and is part of the Human Exploration Telerobotics Project. The project is managed by the Intelligent Robotics Group at Ames and involves research and development at Ames, Johnson and the agency’s Jet Propulsion Laboratory in Pasadena, Calif. Support for the project is provided by the NASA Technology Demonstration Missions program.

Image Credit: NASA

Vacuum chamber

ESA astronaut Samantha Cristoforetti tests her custom-made Sokol spacesuit in a vacuum chamber. Samantha will wear this suit during the liftoff and landing for her six-month International Space Station mission set to start in November this year.

Read more in Samantha’s daily training logbook:
plus.google.com/+SamanthaCristoforetti/


Follow Samantha as she prepares for her Futura mission:
samanthacristoforetti.esa.int/


Credits: Yuri P. Kargapolov

Salt marsh, Kazakhstan

This satellite image was acquired over the edge of a salt marsh near the northeast Caspian Sea in southwestern Kazakhstan.

The Caspian Sea (not pictured) is the largest inland body of water by surface area. With an average depth of about 5 m, the northern part of the Caspian is very shallow, while the central and southern parts of the sea are much deeper. The salinity of the waters also change from north to south, being more saline in the northern, shallow waters and and less in the south.

The salt marsh in the upper section of this image was once a gulf of the Caspian Sea, but fluctuating sea levels over the last decades cause it to be cut off occasionally from the main body of water and even dry up. In this image, it appears that the water has evaporated, leaving behind a white salt crust.

Rock formations dominate the central part of the image, while a plateau stretches south and east (not pictured). The visible shapes in combination with the dark colour of the rocks may indicate that they are volcanic, with water erosion evident in the finger-like runoff patterns.

The grey rim between the land and salt pan comes from the sedimentary runoff from the land mixing with the saltwater. When the marsh is dry, a greyish colour is left behind.

The arid climate in this region makes it easy to acquire optical imagery from satellites, without the obstruction of visibility by clouds.

This image was acquired on 6 November 2012 by the Korea Aerospace Research Institute’s Kompsat-2 satellite and is featured on the

bunnybundy:

April 12, 1981 - after a two day launch delay, the world’s first Space Shuttle, Columbia, launches from the Cape. STS-1’s crew, John Young and Bob Crippen, become the ultimate test pilots, flying NASA’s first manned maiden flight of any spacecraft. Unaware of a potentially catastrophic fire in the front wheel well, Young lands Columbia perfectly on April 14, after 37 orbits of the Earth. He becomes the only human being to fly the Gemini, Apollo and Shuttle crafts, and to have walked on the moon.

To Tumblr, Love Pixel Union